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Abstract

Neural embedding models have become a fundamental component of modern
information retrieval (IR) pipelines. These models produce a single embedding
x € R4 per data-point, allowing for fast retrieval via highly optimized maximum
inner product search (MIPS) algorithms. Recently, beginning with the landmark
ColBERT paper, multi-vector models, which produce a set of embedding per data
point, have achieved markedly superior performance for IR tasks. Unfortunately,
using these models for IR is computationally expensive due to the increased
complexity of multi-vector retrieval and scoring.

In this paper, we introduce MUVERA (Multi-Vector Retrieval Algorithm), a re-
trieval mechanism which reduces multi-vector similarity search to single-vector
similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-
vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encod-
ings (FDEs) of queries and documents, which are vectors whose inner product
approximates multi-vector similarity. We prove that FDEs give high-quality -
approximations, thus providing the first single-vector proxy for multi-vector simi-
larity with theoretical guarantees. Empirically, we find that FDEs achieve the same
recall as prior state-of-the-art heuristics while retrieving 2-5x fewer candidates.
Compared to prior state of the art implementations, MUVERA achieves consis-
tently good end-to-end recall and latency across a diverse set of the BEIR retrieval
datasets, achieving an average of 10% improved recall with 90% lower latency.

1 Introduction

Over the past decade, the use of neural embeddings for representing data has become a central
tool for information retrieval (IR) [56], among many other tasks such as clustering and classifica-
tion [39]. Recently, multi-vector (MV) representations, introduced by the late-interaction framework
in ColBERT [29], have been shown to deliver significantly improved performance on popular IR
benchmarks. ColBERT and its variants [17, 21, 32, 35, 42, 44, 49, 54] produce multiple embeddings
per query or document by generating one embedding per token. The query-document similarity is
then scored via the Chamfer Similarity (§1.1), also known as the MaxSim operation, between the two
sets of vectors. These multi-vector representations have many advantages over single-vector (SV)
representations, such as better interpretability [15, 50] and generalization [16, 36, 51, 55].

Despite these advantages, multi-vector retrieval is inherently more expensive than single-vector
retrieval. Firstly, producing one embedding per token increases the number of embeddings in a
dataset by orders of magnitude. Moreover, due to the non-linear Chamfer similarity scoring, there
is a lack of optimized systems for multi-vector retrieval. Specifically, single-vector retrieval is
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Figure 1: MUVERA’s two-step retrieval process, comapred to PLAID’s multi-stage retrieval process. Diagram
on the right from Santhanam et. al. [43] with permission.

generally accomplished via Maximum Inner Product Search (MIPS) algorithms, which have been
highly-optimized over the past few decades [18]. However, SV MIPS alone cannot be used for MV
retrieval. This is because the MV similarity is the sum of the SV similarities of each embedding in
a query to the nearest embedding in a document. Thus, a document containing a token with high
similarity to a single query token may not be very similar to the query overall. Thus, in an effort
to close the gap between SV and MV retrieval, there has been considerable work in recent years to
design custom MV retrieval algorithms with improved efficiency [12, 21, 42, 43].

The most prominent approach to MV retrieval is to employ a multi-stage pipeline beginning with
single-vector MIPS. The basic version of this approach is as follows: in the initial stage, the
most similar document tokens are found for each of the query tokens using SV MIPS. Then the
corresponding documents containing these tokens are gathered together and rescored with the
original Chamfer similarity. We refer to this method as the single-vector heuristic. CoOIBERTV2 [44]
and its optimized retrieval engine PLAID [43] are based on this approach, with the addition of
several intermediate stages of pruning. In particular, PLAID employs a complex four-stage retrieval
and pruning process to gradually reduce the number of final candidates to be scored (Figure 1).
Unfortunately, as described above, employing SV MIPS on individual query embeddings can fail to
find the true MV nearest neighbors. Additionally, this process is expensive, since it requires querying
a significantly larger MIPS index for every query embedding (larger because there are multiple
embeddings per document). Finally, these multi-stage pipelines are complex and highly sensitive to
parameter setting, as recently demonstrated in a reproducibility study [37], making them difficult to
tune. To address these challenges and bridge the gap between single and multi-vector retrieval, in this
paper we seek to design faster and simplified MV retrieval algorithms.

Contributions. We propose MUVERA: a multi-vector retrieval mechanism based on a light-weight
and provably correct reduction to single-vector MIPS. MUVERA employs a fast, data-oblivious
transformation from a set of vectors to a single vector, allowing for retrieval via highly-optimized
MIPS solvers before a single stage of re-ranking. Specifically, MUVERA transforms query and
document MV sets @, P C R? into single fixed-dimensional vectors ¢, 7, called Fixed Dimensional
Encodings (FDEs), such that the the dot product ¢ p approximates the multi-vector similarity between
@, P (§2). Empirically, we show that retrieving with respect to the FDE dot product significantly
outperforms the single vector heuristic at recovering the Chamfer nearest neighbors (§3.1). For
instance, on MS MARCO, our FDEs RecallQN surpasses the Recall@2-5N achieved by the SV
heuristic while scanning a similar total number of floats in the search.

We prove in (§2.1) that our FDEs have strong approximation guarantees; specifically, the FDE
dot product gives an e-approximation to the true MV similarity. This gives the first algorithm
with provable guarantees for Chamfer similarity search with strictly faster than brute-force runtime
(Theorem 2.2). Thus, MUVERA provides the first principled method for MV retrieval via a SV proxy.

We compare the end-to-end retrieval performance of MUVERA to PLAID on several of the BEIR
IR datasets, including the well-studied MS MARCO dataset. We find MUVERA to be a robust and
efficient retrieval mechanism; across the datasets we evaluated, MUVERA obtains an average of 10%
higher recall, while requiring 90% lower latency on average compared with PLAID. Additionally,
MUVERA crucially incorporates a vector compression technique called product quantization that



enables us to compress the FDEs by 32 (i.e., storing 10240 dimensional FDEs using 1280 bytes)
while incurring negligible quality loss, resulting in a significantly smaller memory footprint.

1.1 Chamfer Similarity and the Multi-Vector Retrieval Problem
Given two sets of vectors Q, P C RY, the Chamfer Similarity is given by

CHAMFER(Q, P) = ax(q,
(@, P) q;)rgleg@ p)

where (-, -) is the standard vector inner product. Chamfer similarity is the default method of MV sim-
ilarity used in the /ate-interaction architecture of ColBERT, which includes systems like ColBERTv2
[44], Baleen [28], Hindsight [41], DrDecr [34], and XTR [32], among many others. These models en-
code queries and documents as sets Q, P C IR? (respectively), where the query-document similarity
is given by CHAMFER(Q, P). We note that Chamfer Similarity (and its distance variant) itself has a
long history of study in the computer vision (e.g., [4, 6, 14, 27, 45]) and graphics [33] communities,
and had been previously used in the ML literature to compare sets of embeddings [3, 5, 30, 48]. In
these works, Chamfer is also referred to as MaxSim or the relaxed earth mover distance; we choose
the terminology Chamfer due to its historical precedence [6].

In this paper, we study the problem of Nearest Neighbor Search (NNS) with respect to the Chamfer
Similarity. Specifically, we are given a dataset D = {P}, ..., P,} where each P; C R? is a set of
vectors. Given a query subset Q C IR?, the goal is to quickly recover the nearest neighbor P* € D,
namely:

P* = arg max CHAMFER(Q, P;)

For the retrieval system to be scalable, this must be achieved in time significantly faster than brute-
force scoring each of the n similarities CHAMFER(Q, P;).

1.2 Our Approach: Reducing Multi-Vector Search to Single-Vector MIPS

MUVERA is a streamlined procedure that directly reduces the Chamfer Similarity Search to MIPS. For
a pre-specified target dimension dgpg, MUVERA produces randomized mappings Fy : 2R? _y Réroe

. d
(for queries) and Fyo : 22" — R%= (for documents) such that, for all query and document
multivector representations ), P C R? , we have:

(Fq(Q), Faoc(P)) ~ CHAMFER(Q, P)

We refer to the vectors Fo(Q), Faoc(P) as Fixed Dimensional Encodings (FDEs). MUVERA first
applies F g, to each document representation P € D, and indexes the set {Fgo.(P)}pep into a
MIPS solver. Given a query Q@ C R¢, MUVERA quickly computes F(Q) and feeds it to the MIPS
solver to recover top-k most similar document FDE’s F g, (P). Finally, we re-rank these candidates
by the original Chamfer similarity. See Figure 1 for an overview. We remark that one important
advantage of the FDEs is that the functions Fy, Fy,. are data-oblivious, making them robust to
distribution shifts, and easily usable in streaming settings.

1.3 Related Work on Multi-Vector Retrieval

The early multi-vector retrieval systems, such as ColIBERT [29], all implement optimizations of the
previously described SV heuristic, where the initial set of candidates is found by querying a MIPS
index for every query token ¢ € @. In ColBERTV2 [44], the document token embeddings are first
clustered via k-means, and the first round of scoring using cluster centroids instead of the original
token. This technique was further optimized in PLAID [43] by employing a four-stage pipeline to
progressively prune candidates before a final reranking (Figure 1).

An alternative approach with proposed in DESSERT [12], whose authors also pointed out the
limitations of the SV heuristic, and proposed an algorithm based on Locality Sensitive Hashing (LSH)
[20]. They prove that their algorithm recovers e-approximate nearest neighbors in time O(n|Q|T),
where T is roughly the maximum number of document tokens p € P; that are similar to any query
token g € (), which can be as large as max; | P;|. Thus, in the worst case, their algorithm runs no
faster than brute-force. Conversely, our algorithm recovers e-approximate nearest neighbors and
always runs in time O(n|Q|). Experimentally, DESSERT is 2-5x faster than PLAID, but attains
worse recall (e.g. 2-2.5% R@1000 on MS MARCO). Conversely, we match and sometimes strongly



exceed PLAID’s recall with up to 5.7 lower latency. Additionally, DESSERT still employs an initial
filtering stage based on k-means clustering of individual query token embeddings (in the manner of
ColBERTV2), thus they do not truly avoid the aforementioned limitations of the SV heuristic.

2 Fixed Dimensional Encodings

We now describe our process for generating FDEs. Our transformation is reminiscent of the technique
of probabilistic tree embeddings [1, 7, 10, 13], which can be used to transform a set of vectors into
a single vector. For instance, they have been used to embed the Earth Mover’s Distance into the
£y metric [1, 10, 22, 24], and to embed the weight of a Euclidean MST of a set of vectors into the
Hamming metric [9, 22, 23]. However, since we are working with inner products, which are not
metrics, instead of £, distances, an alternative approach for our transformation will be needed.

The intuition behind our transformation is as follows. Hypothetically, for two MV representations
Q, P C R, if we knew the optimal mapping 7 : Q — P in which to match them, then we could
create vectors ¢, p'by concatenating all the vectors in @) and their corresponding images in P together,
so that (¢, p) = >_,c0(¢,m(¢)) = CHAMFER(Q, P). However, since we do not know  in advance,
and since different query-document pairs have different optimal mappings, this simple concatenation
clearly will not work. Instead, our goal is to find a randomized ordering over all the points in R so
that, after clustering close points together, the dot product of any query-document pair @, P C R¢
concatenated into a single vector under this ordering will approximate the Chamfer similarity.

The first step is to partition the latent space IR? into B clusters so that vectors that are closer are
more are more likely to land in the same cluster. Let ¢ : R? — [B] be such a partition; ¢ can be
implemented via Locality Sensitive Hashing (LSH) [20], k-means, or other methods; we discuss
choices for ¢ later in this section. After partitioning via ¢, the hope is that for each ¢ € @), the closest
p € P lands in the same cluster (i.e. ¢(q) = ¢(p )). Hypothetically, if this were to occur, then:

CHAMFER(Q, P) Z > max (q,p) 1)

A ook
If p is the only point in P that collides with g, then (1) can be realized as a dot product between two
vectors ¢, p by creating one block of d coordinates in ¢, 7 for each cluster k& € [B] (call these blocks
(k)> Py € RY), and setting Gy, P(x) to be the sum of all ¢ € Q (resp. p € P) that land in the k-th
cluster under . However, if multiple p’ € P collide with ¢, then (g, p) will differ from (1), since
every p’ with o (p") = ¢(q) will contribute at least (g, p’) to (¢, 7). To resolve this, we set p;) to be
the centroid of the p € P’s with ¢o(p) = ¢(q). Formally, for k = 1, ..., B, we define

dr) = E q, Pky = |Pﬂ E p 2
P~
€Q
v((lq):k (p) k

Setting ¢ = (q1), - - -» ¢()) and p'= (P(1), ..., D(m)), then we have

(@) = Z ) ‘Pmp T 2 @) 3)

k=1 q€Q peEP
P(a)=Fk p(p)=Fk

Note that the resulting dimension of the vectors ¢, p'is dB. To reduce the dependency on d, we
can apply a random linear projection 2/ : R¢ — IR%=i to each block q(k)> P(k)» Where dpro5 < d.
Specifically, we define ¥ (z) = (1/\/dproj)Sz, where S € R%=*< is a random matrix with
uniformly distributed +1 entries. We can then define q(x),», = ¥ (q(x)) and pry,¢ = ¥ (P(x)), and
define the FDE’s with inner projection as @y = (q(1),4> - - - 4(B),y) a0 Pop = (P(1),3p> - - s D(B),ap)-
When d = dproj, we simply define 1) to be the identity mapping, in which case ¢y, Py are identical to
¢, p. To increase accuracy of (3) in approximating (1), we repeat the above process R;eps > 1 times
independently, using different randomized partitions ¢1, . . ., ¢r,,,, and projections ¥, ..., 9¥r,,,.
We denote the vectors resulting from i-th repetition by ¢; «, D; . Finally, we concatenate these
Rieps vectors together, so that our final FDEs are defined as Fq(Q) = (1,4, - - Ry ) and
Faoc(P) = (P14 - s DRuerp)- Observe that a complete FDE mapping is specified by the three
parameters (B, dproj, Rreps), resulting in a final dimension of dgpg = B - dproj * Freps-
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Figure 2: FDE Generation Process. Three SimHashes (ksim = 3) split space into six regions labelled A-F
(in high-dimensions B = 2= but B = 6 here since d = 2). Fq(Q), Faoc(P) are shown as B x d matrices,
where the k-th row is g(x), D(x)- The actual FDEs are flattened versions of these matrices. Not shown: inner
projections, repetitions, and fill__empty _ clusters.

Choice of Space Partition When choosing the partition function ¢, the desired property is that
points are more likely to collide (i.e. ¢(z) = (y)) the closer they are to each other. Such functions
with this property exist, and are known as locality-sensitive hash functions (LSH) (see [20]). When
the vectors are normalized, as they are for those produced by ColBERT-style models, SimHash [8]
is the standard choice of LSH. Specifically, for any kg, > 1, we sample random Gaussian vectors
G155 Ok € RY, and set o(z) = (1({g1, ) > 0),...,1((gr,.,2) > 0)), where 1(-) € {0, 1} is
the indicator function. Converting the bit-string to decimal, ¢ () gives a mapping from R to [B]
where B = 2Fs=_ In other words, SimHash partitions R¢ by drawing kg, random half-spaces, and
each of the the 2%s= clusters is formed by the kg, -wise intersection of each of these halfspaces or
their complement. Another natural approach is to choose kcgyrer = 1 centers from the collection of
all token embeddings U?"_; P;, either randomly or via k-means, and set ¢(x) € [kepnrer] to be the
index of the center nearest to x. We compare this method to SimHash in (§3.1).

Filling Empty Clusters. A key source of error in the FDE’s approximation is when the nearest vector
p € P to a given query embedding ¢ € () maps to a different cluster, namely ¢(p) # ©(q) = k.
This can be made less likely by decreasing B, at the cost of making it more likely for other p’ € P to
also map to the same cluster, moving the centroid p(y) farther from p. If we increase B too much, it
is possible that no p € P collides with ¢(g). To avoid this trade-off, we directly ensure that if no
p € P maps to a cluster k, then instead of setting p(;) = 0 we set Py to the point p that is closest to
cluster k. As a result, increasing B will result in a more accurate estimator, as this results in smaller
clusters. Formally, for any cluster k& with P N ¢~ (k) = (), if fill_empty_ clusters is enabled, we
set () = p where p € P is the point for which ¢(p) has the fewest number of disagreeing bits with
k (both thought of as binary strings), with ties broken arbitrarily. We do not enable this for query
FDE:s, as doing so would result in a given ¢ € () contributing to the dot product multiple times.

Final Projections. A natural approach to reducing the dimensionality is to apply a final projection
9’ : R¥%re — Réma (also implemented via multiplication by a random +1 matrix) to the FDE’s,
reducing the final dimensionality to any dan. < drpg. Experimentally, we find that final projections
can provides small but non-trivial 1-2% recall boosts for a fixed dimension (see §C.2).

2.1 Theoretical Guarantees for FDEs

We now state our theoretical guarantees for our FDE construction. For clarity, we state our results in

terms of normalized Chamfer similarity NCHAMFER(Q, P) = ﬁCHAMFER(Q, P). This ensures

NCHAMFER(Q, P) € [—1, 1] whenever the vectors in ), P are normalized. Note that this factor of
1/]@] does not affect the relative scoring of documents for a fixed query. In what follows, we assume
that all token embeddings are normalized (i.e. ||¢||2 = ||p|l2 = 1 for all ¢ € Q,p € P). Note that
ColBERT-style late interaction MV models indeed produce normalized token embeddings. We will
always use the fill__empty _ clusters method for document FDEs, but never for queries.

Our main result is that FDEs give e-additive approximations of the Chamfer similarity. The proof
uses the properties of LSH (SimHash) to show that for each query point ¢ € @, the point g gets
mapped to a cluster ¢(q) that only contains points p € P that are close to g (within ¢ of the closest
point to ¢); the fact that at least one point collides with ¢ uses the fill__empty_ partitions method.



Theorem 2.1 (FDE Approximation). Fix any ,6 > 0, and sets Q, P C R¢ of unit vectors, and let
-1
m = |Q| + |P|. Then setting ks = O (71%(726 )), dproj = O (2 10g(2)), Rreps = 1, so that

drpe = (m/8)P1/9), then in expectation and with probability at least 1 — § we have

NCHAMFER(Q, P) — e < ﬁ(Fq(Q),FdOC(P» < NCHAMFER(Q, P) + ¢

Finally, we show that our FDE’s give an e-approximate solution to Chamfer similarity search, using
FDE dimension that depends only logarithmically on the size of the dataset n. Using the fact that
our query FDEs are sparse (Lemma A.1), one can run exact MIPS over the FDEs in time O(|Q| - n),
improving on the brute-force runtime of O(|Q| max; | P;|n) for Chamfer similarity search.

Theorem 2.2. Fix any ¢ > 0, query Q, and dataset P = {P;,...,P,}, where Q C R% and
each P; C R is a set of unit vectors. Let m = |Q| + max;e(n) |Pi|. Let ksim = O(logem),
dpro; = O(Z log(m/e)) and Ryeps = O(Z5 logn) so that dppg = mCP/e) logn. Then if
i* = arg max;e [, (Fy(Q), Faoc(P;)), with high probability (i.e. 1 — 1/ poly(n)) we have:

NCHAMFER(Q, P;+) > mé[l)]iNCHAMFER(Q, P)—c¢
i€n

Given the query Q, the document P* can be recovered in time O (|Q| max{d,n} 2 log("2)logn).

3 Evaluation

In this section, we evaluate our FDEs as a method for MV retrieval. First, we evaluate the FDEs
themselves (offline) as a proxy for Chamfer similarity (§3.1). In (§3.2), we discuss the implementation
of MUVERA, as well as several optimizations made in the search. Then we evaluate the latency of
MUVERA compared to PLAID, and study the effects of the aforementioned optimizations.

Datasets. Our evaluation includes results from six of the well-studied BEIR [46] information retrieval
datasets: MS MARCO [40] (CC BY-SA 4.0), HotpotQA (CC BY-SA 4.0) [53], NQ (Apache-2.0)
[31], Quora (Apache-2.0) [46], SciDocs (CC BY 4.0) [11], and ArguAna (Apache-2.0) [47]. These
datasets were selected for varying corpus size (8K-8.8M) and average number of document tokens
(18-165); see (§B) for further dataset statistics. Following [43], we use the development set for our
experiments on MS MARCO, and use the test set on the other datasets.

MYV Model, MV Embedding Sizes, and FDE Dimensionality. We compute our FDEs on the
MYV embeddings produced by the ColBERTv2 model [44] (MIT License), which have a dimension
of d = 128 and a fixed number |Q| = 32 of embeddings per query. The number of document
embeddings is variable, ranging from an average of 18.3 on Quora to 165 on Scidocs. This results in
2,300-21,000 floats per document on average (e.g. 10,087 for MS MARCO). Thus, when constructing
our FDEs we consider a comparable range of dimensions dgpg between 1,000-20,000. Furthermore,
using product quantization, we show in (§3.2) that the FDEs can be significantly compressed by 32x
with minimal quality loss, further increasing the practicality of FDEs.

3.1 Offline Evaluation of FDE Quality

We evaluate the quality of our FDEs as a proxy for the Chamfer similarity, without any re-ranking
and using exact (offline) search. We first demonstrate that FDE recall quality improves dependably as
the dimension dgpg increases, making our method relatively easy to tune. We then show that FDEs
are a more effective method of retrieval than the SV heuristic. Specifically, the FDE method achieves
RecallQN exceeding the Recall@2-4N of the SV heuristic, while in principle scanning a similar
number of floats in the search. This suggests that the success of the SV heuristic is largely due to the
significant effort put towards optimizing it (as supported by [37]), and similar effort for FDEs may
result in even bigger efficiency gains. Additional plots can be found in (§C). All recall curves use a
single FDE instantiation, since in (§C.1) we show the variance of FDE recall is negligible.

FDE Quality vs. Dimensionality. We study how the retrieval quality of FDE’s improves as
a function of the dimension drpg. We perform a grid search over FDE parameters Reps €
{1,5,10,15,20}, kgm € {2,3,4,5,6}, dproj € {8, 16, 32,64}, and compute recall on MS MARCO
(Figure 3). We find that Pareto optimal parameters are generally achieved by larger Rieps,
with Kgm, dpro; playing a lesser role in improving quality. Specifically, (Rreps,ksim,dpmj) S
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Figure 3: FDE recall vs dimension for varying FDE parameters on MS MARCO. Plots show FDE
Recall@100,1k,10k left to right. Recalls@N for exact Chamfer scoring is shown by dotted lines.
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Figure 4: Comparison of FDE recall versus brute-force search over Chamfer similarity.

{(20,3,8), (20,4, 8)(20,5,8),(20,5,16) } were all Pareto optimal for their respective dimensions
(namely Rieps - Qkeim . dproj). While there are small variations depending on the parameter choice, the
FDE quality is tightly linked to dimensionality; increase in dimensionality will generally result in
quality gains. We also evaluate using k-means as a method of partitioning instead of SimHash. Specif-
ically, we cluster the document embeddings with k-means and set () to be the index of the nearest
centroid to 2. We perform a grid search over the same parameters (but with k € {4, 8,16, 32,64} to
match B = 2%s=)_ We find that k-means partitioning offers no quality gains on the Pareto Frontier
over SimHash, and is often worse. Moreover, FDE construction with k-means is no longer data
oblivious. Thus, SimHash is chosen as the preferred method for partitioning for the remainder of our
experiments.

In Figure 4, we evaluate the FDE retrieval quality with respect to the Chamfer similarity (instead
of labelled ground truth data). We compute 1Recall@ N, which is the fraction of queries for which
the Chamfer 1-nearest neighbor is among the top-/N most similar in FDE dot product. We choose
FDE parameters which are Pareto optimal for the dimension from the above grid search. We find that
FDE’s with fewer dimensions that the original MV representations achieve significantly good recall
across multiple BEIR retrieval datasets. For instance, on MS MARCO (where d - mgq.4 =~ 10K) we
achieve 95% recall while retrieving only 75 candidates using dgpg = 5120.

Single Vector Heuristic vs. FDE retrieval. We compare the quality of FDEs as a proxy for retrieval
against the previously described SV heuristic, which is the method underpinning PLAID. Recall that

in this method, for each of the ¢ = 1, ..., 32 query vectors ¢; we compute the k nearest neighbors
Di,is- - -, Pk,i from the set U; P; of all documents token embeddings. To compute RecallQ/V, we create
an ordered list €11, ...,¢1,32,¢2 1, ..., where ¢; ; is the document ID containing p; ;, consisting of

the 1-nearest neighbors of the queries, then the 2-nearest neighbors, and so on. When re-ranking,
one firsts removes duplicate document IDs from this list. Since duplicates cannot be detected while
performing the initial 32 SV MIPS queries, the SV heuristic needs to over-retrieve to reach a desired
number of unique candidates. Thus, we note that the true recall curve of implementations of the SV
heuristic (e.g. PLAID) is somewhere between the case of no deduplication and full deduplication; we
compare to both in Figure 5.

To compare the cost of the SV heuristic to running MIPS over the FDEs, we consider the total number
of floats scanned by both using a brute force search. The FDE method must scan n - dgpg floats to
compute the k-nearest neighbors. For the SV heuristic, one runs 32 brute force scans over n - mgygq
vectors in 128 dimensions, where m,,4 is the average number embeddings per document (see §B
for values of 1m,4). For MS MARCO, where m,,, = 78.8, the SV heuristic searches through
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Figure 5: FDE retrieval vs SV Heuristic, both with and without document id deduplication.

32 - 128 - 78.8 - n floats. This allows for an FDE dimension of dgpg = 322,764 to have comparable
cost! We can extend this comparison to fast approximate search — suppose that approximate MIPS
over n vectors can be accomplished in sublinear n° time, for some € € (0,1). Then even in the
unrealistic case of ¢ = 0, we can still afford an FDE dimension of dgpg = 32 - 128 = 4096.

The results can be found in Figure 5. We build FDEs once for each dimension, using Ryeps =
40, kgim = 6, dproj = d = 128, and then applying a final projection to reduce to the target dimension
(see C.2 for experiments on the impact of final projections). On MS MARCO, even the 4096-
dimensional FDEs match the recall of the (deduplicated) SV heuristic while retrieving 1.75-3.75 %
fewer candidates (our Recall@N matches the Recall@1.75-3.75N of the SV heuristic), and 10.5-15 %
fewer than to the non-deduplicated SV heuristic. For our 10240-dimension FDEs, these numbers are
2.6-5x and 20-22.5x fewer, respectively. For instance, we achieve 80% recall with 60 candidates
when dppg = 10240 and 80 candidates when drpg = 4096, but the SV heuristic requires 300 and
1200 candidates (for dedup and non-dedup respectively). See Table 1 for further comparisons.

Variance. Note that although the FDE generation is a randomized process, we show in (§C.1)
that the variance of the FDE Recall is essentially negligible; for instance, the standard deviation
Recall@1000 is at most 0.08-0.16% for FDEs with 2-10k dimensions.

3.2 Online Implementation and End-to-End Evaluation

We implemented MUVERA, an FDE generation and end-to-end retrieval engine in C++. We discussed
FDE generation and various optimizations and their tradeoffs in (§3.1). Next, we discuss how we
perform retrieval over the FDEs, and additional optimizations.

Single-Vector MIPS Retrieval using DiskANN Our single-vector retrieval engine uses a scalable
implementation [38] of DiskANN [25] (MIT License), a state-of-the-art graph-based ANNS algorithm.
We build DiskANN indices by using the uncompressed document FDEs with a maximum degree
of 200 and a build beam-width of 600. Our retrieval works by querying the DiskANN index using
beam search with beam-width T, and subsequently reranking the retrieved candidates with Chamfer
similarity. The only tuning knob in our system is W; increasing W increases the number of candidates
retrieved by MUVERA, which improves the recall.

Ball Carving. To improve re-ranking speed, we reduce the number of query embeddings by
clustering them via a ball carving method and replacing the embeddings in each cluster with their
sum. This speeds up reranking without decreasing recall; we provide further details in (§C.3).

Product Quantization (PQ). To further improve the memory usage of MUVERA, we use a textbook
vector compression technique called product quantization (PQ) with asymmetric querying [19, 26] on
the FDEs. We refer to product quantization with C' centers per group of G dimensions as PQ-C-G.
For example, PQ-256-8, which we find to provide the best tradeoff between quality and compression
in our experiments, compresses every consecutive set of 8 dimensions to one of 256 centers. Thus
PQ-256-8 provides 32x compression over storing each dimension using a single float, since each
block of 8 floats is represented by a single byte. See (§C.4) for further experiments and details on PQ.

Experimental Setup We run our online experiments on an Intel Sapphire Rapids machine on
Google Cloud (c3-standard-176). The machine supports up to 176 hyper-threads. We run latency
experiments using a single thread, and run our QPS experiments on all 176 threads.

QPS vs. Recall A useful metric for retrieval is the number of queries per second (QPS) a system can
serve at a given recall; evaluating the QPS of a system tries to fully utilize the system resources (e.g.,
the bandwidth of multiple memory channels and caches), and deployments where machines serve
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Figure 6: Plots showing the QPS vs. Recall@100 for MUVERA on a subset of the BEIR datasets. The different
curves are obtained by using different PQ methods on 10240-dimensional FDEs.
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Figure 7: Bar plots showing the latency and Recall@k of MUVERA vs PLAID on a subset of the BEIR datasets.
The x-tick labels are formatted as dataset-k, i.e., optimizing for Recall@k on the given dataset.

many queries simultaneously. Figure 6 shows the QPS vs. Recall@ 100 for MUVERA on a subset
of the BEIR datasets, using different PQ schemes over the FDEs. We show results for additional
datasets, as well as Recall@1000, in the Appendix. Using PQ-256-8 not only reduces the space
usage of the FDEs by 32 x, but also improves the QPS at the same query beamwidth by up to 20x,
while incurring a minimal loss in end-to-end recall. Our method has a relatively small dependence on
the dataset size, which is consistent with prior studies on graph-based ANNS data structures, since
the number of distance comparisons made during beam search grows roughly logarithmically with
increasing dataset size [25, 38]. We tried to include QPS numbers for PLAID [43], but unfortunately
their implementation does not support running multiple queries in parallel, and is optimized for
measuring latency.

Latency and Recall Results vs. PLAID [43] We evaluated MUVERA and PLAID [43] on the 6
datasets from the BEIR benchmark described earlier in (§3); Figure 7 shows that MUVERA achieves
essentially equivalent Recall@k as PLAID (within 0.4%) on MS MARCO, while obtaining up to
1.56x higher recall on other datasets (e.g. HotpotQA). We ran PLAID using the recommended settings
for their system, which reproduced their recall results for MS MARCO. Compared with PLAID, on
average over all 6 datasets and k € {100,1000}, MUVERA achieves 10% higher Recall@k (up to
56% higher), and 90% lower latency (up to 5.7 x lower).

Importantly, MUVERA has consistently high recall and low latency across all of the datasets that we
measure, and our method does not require costly parameter tuning to achieve this—all of our results



use the same 10240-dimensional FDEs that are compressed using PQ with PQ-256-8; the only tuning
in our system was to pick the first query beam-width over the k that we rerank to that obtained recall
matching that of PLAID. As Figure 7 shows, in cases like NQ and HotpotQA, MUVERA obtains
much higher recall while obtaining lower latency. Given these results, we believe a distinguishing
feature of MUVERA compared to prior multi-vector retrieval systems is that it achieves consistently
high recall and low latency across a wide variety of datasets with minimal tuning effort.

4 Conclusion

In this paper, we presented MUVERA: a principled and practical MV retrieval algorithm which
reduces MV similarity to SV similarity by constructing Fixed Dimensional Encoding (FDEs) of a
MYV representation. We prove that FDE dot products give high-quality approximations to Chamfer
similarity (§2.1). Experimentally, we show that FDEs are a much more effective proxy for MV
similarity, since they require retrieving 2-4 x fewer candidates to achieve the same recall as the SV
Heuristic (§3.1). We complement these results with an end-to-end evaluation of MUVERA, showing
that it achieves an average of 10% improved recall with 90% lower latency compared with PLAID.
Moreover, despite the extensive optimizations made by PLAID to the SV Heuristic, we still achieve
significantly better latency on 5 out of 6 BEIR datasets we consider (§3). Given their retrieval
efficiency compared to the SV heuristic, we believe that there are still significant gains to be obtained
by optimizing the FDE method, and leave further exploration of this to future work.

Broader Impacts and Limitations: While retrieval is an important component of LLMs, which
themselves have broader societal impacts, these impacts are unlikely to result from our retrieval
algorithm. Our contribution simply improves the efficiency of retrieval, without enabling any
fundamentally new capabilities. As for limitations, while we outperformed PLAID, sometimes
significantly, on 5 out of the 6 datasets we studied, we did not outperform PLAID on MS MARCO,
possibly due to their system having been carefully tuned for MS MARCO given its prevalence.
Additionally, we did not study the effect that the average number of embeddings m,,4 per document
has on retrieval quality of FDEs; this is an interesting direction for future work.
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A Missing Proofs from Section 2.1

In this section, we provide the missing proofs in Section 2.1. For convenience, we also reproduce
theorem statements as they appear in the main text before the proofs. We begin by analyzing the
runtime to compute query and document FDEs, as well as the sparsity of the queries.

Lemma A.1. For any FDE parameters Kgim, dproj, Rreps = and sets Q, P C R?, we can compute
F,(Q) intime Ty := O(Ryeps|Q|d(dproj + ksim)), and F ,(P) in time O(T, + RTGP5|P|2k5imksim).
Moreover, F(Q) has at most O(|Q|dprojRreps) non-zero entries.

Proof. We first consider the queries. To generate the queries, we must first project each of the |Q)|
queries via the inner random linear productions t; : R — R%w, which requires O(|Q|ddpro;j Rreps)
time to perform the matrix-query products for all repetitions. Next, we must compute ;(q) for each
q € @ and repetition ¢ € [Rreps], Each such value can be compute in d - kg, time to multiply the
q € R? by the kg, Gaussian vectors. Thus the total running time for this step i O(Ryeps| Q| dksim ).
Finally, summing the relevant values into the FDE once ;(q), ¥;(¢) are computed can be done in
O(|Q|dpro;) time. For sparsity, note that only the coordinate blocks in the FDE corresponding to
clusters k in a repetition ¢ with at least one ¢ € |@Q)| with ¢;(g) = k are non-zero, and there can be at
most O(Rqeps|@|) of these blocks, each of which has O(dp..;) coordinates.

The document runtime is similar, except with the additional complexity required to carry out the
fill__empty_ clusters option. For each repetition, the runtime required to find the closest p € P toa
give cluster k is O(| P| - ksm), since we need to run over all |p| values of ¢(p) and check how many
bits disagree with k. Thus, the total runtime is O(Ryeps|P|Bkgim) = O(Rreps|P |2Fsim o ). O

In what follows, we will need the following standard fact that random projections approximately
preserve dot products. The proof is relatively standard, and can be found in [2], or see results on
approximate matrix product [52] for more general bounds.

Fact A.2 ([2]). Fix e,6 > 0. Foranyd > 1 and z,y € RY let S € R**¢ by a matrix of
independent entries distributed uniformly over {1, —1}, where t = O(1/€2 - log 6 ). Then we have
E [(Sz, Sy)] = (z,y), and moreover with probability at least 1 — 0 we have

|(Sz, Sy) — (z,y)| < ellzl2]lyll2

To anaylze the approximations of our FDEs, we begin by proving an upper bound on the value of
the FDE dot product. In fact, we prove a stronger result: we show that our FDEs have the desirable
property of being one-sided estimators — namely, they never overestimate the true Chamfer similarity.
This is summarized in the following Lemma.

Lemma A.3 (One-Sided Error Estimator). Fix any sets Q, P C R? of unit vectors with |Q|+|P| = m.
Then if d = dproj we always have

1

Ql (Fy(Q), Fuoe(P)) < NCHAMFER(Q, P)

Furthermore, for any & > 0, if we set dpro; = O(Z%log(m/d)), then we have

|TlQ|<FQ<Q)7 Fuc(P)) < NCHAMFER(Q, P) + ¢ in expectation and with probability at least 1 — 6.
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Proof. First claim simply follows from the fact that the average of a subset of a set of numbers can’t
be bigger than the maximum number in that set. More formally, we have:

1 1 &
@<FQ(Q)aFdOC(P)>*@; Z |PmQO_1( )l pz <qap>

eP
¢(q) k e(p)=k
1 & 1
S0 e D, max(gp) 4
Q| Pl |P N 1(k)| vy €P 4
p(q)=k p(p)=k

Which completes the first part of the lemma. For the second part, to analyze the case of dy;o; < d,
when inner random projections are used, by applying Fact A.2, firstly we have E [(1)(p), ¥ (q)] =
{q,p) forany ¢ € Q,p € P, and secondly, after a union bound we over | P| - |Q| < m? pairs, we
have (g, p) = (1»(p), ¥ (q)) £ & simultaneously for all ¢ € Q,p € P, with probability 1 — 4, for any
constant C' > 1. The second part of the Lemma then follows similarly as above. O

We are now ready to give the proof of our main FDE approximation theorem.
Theorem 2.1 (FDE Approximation). Fix any €, > 0, and sets Q, P C R? of unit vectors, and let
-1
m = |Q| + ‘P‘ Then setting ksim = O (%): dproj = O( IOg(m))’ Rreps =1, so that
drpe = (m/8)°1/9) we have
1
NCHAMFER(Q, P) — ¢ < 1l

in expectation, and with probability at least 1 — J.

(F,(Q),Fuoe(P)) < NCHAMFER(Q, P) + ¢

Proof of Theorem 2.1. The upper bound follows from Lemma A.3, so it will suffice to prove the
lower bound. We first prove the result in the case when there are no random projections 1), and
remove this assumption at the end of the proof. Note that, by construction, Fy is a linear mapping so

that F(Q) = 3_ .o F(g), thus

(Fo(Q), Faoe(P)) = D (Fq(4), Fae(P))

q€Q

So it will suffice to prove that

Pr |(Fy(0): Pa(P) > max(ap) €] > 1-25/1Q) ®

for all ¢ € @, since then, by a union bound 5 will hold for all over all ¢ € () with probability at least
1 — &6, in which case we will have

1
@<FQ(Q)7FdOC |Q| Z (max q,p) — 5)

= NCHAMFER(Q, P)—¢

(6)

which will complete the theorem.

In what follows, for any =,y € R? let §(x, y) € [0, 7] be the angle between x, y. Now fix any ¢ € Q,
and let p* = arg max,cp (g, p), and let 6* = 6(q, p*). By construction, there always exists some set

of points S C P such that
<Fq<Q)aFdOC( = < |S| Zp>

pES



Moreover, the RHS of the above equation is always bounded by 1 in magnitude, since it is an
average of dot products of normalized vectors ¢,p € $9~!. In particular, there are two cases.
In case (A) S is the set of points p with ¢(p) = ¢(q), and in case (B) S is the single point
arg minyep ||(p) — ©(q)|lo, where ||z — y||o denotes the hamming distance between any two bit-
strings x,y € {0, 1}%= and we are interpreting ¢ (p), ¢(q) € {0, 1}*s= as such bit-strings. Also let
g1, - -+ 9k, € R? be the random Gaussian vectors that were drawn to define the partition function
. To analyze S, we first prove the following:

Claim A.4. For any g € @ and p € P, we have

Pr[
T

I0(6) = (@l = ham - “L2| > Vb < (£5)

Proof. Fix any such p, and for i € [kgm] let Z; be an indicator random variable that indicates
the event that 1((g;,p) > 0) # 1({gi,q) > 0). First then note that ||p(p) — ¢(¢)llo =

Zi‘:“i Z;. Now by rotational invariance of Gaussians, for a Gaussian vector ¢ € IR? we have
Pr[1({(g,z) > 0) # 1((g,y) > 0)] = Mﬂy) for any two vectors z,y € R It follows that Z; is a

Bernoulli random variable with E [Z;] = @. By a simple application of Hoeffding’s inequality,
we have

s s
0(q;p — —
Pr Hso(p) @)l — k- )] > \@ksim] P>z ey 2| ﬁksim]
i=1 i=1
< exp (—2¢ksim)
€d
s 2
(N
where we took Kgim > 1/2 - log(’:—;) /€, which completes the proof. O

We now condition on the event in Claim A.4 occurring for all p € P, which holds with probability at

least 1 — |P| - (£5) > 1 — (£2) by a union bound. Call this event &, and condition on it in what
follows.

Now first suppose that we are in case (B), and the set S of points which map to the cluster ¢(q)
is given by S = {p'} where p’ = argmin,ecp ||¢(p) — (q)|lo. Firstly, if p’ = p*, then we are
done as (Fy(q), Faoc(P)) = (q,p*), and 5 follows. Otherwise, by Claim A.4 we must have had
|0(q,p")—0(q,p*)| < 7 /€. Using that the Taylor expansion of cosine is cos(z) = 1—22/2+0(z*),
we have

| cos(0(q, p")) — cos(8(¢,p"))| < O(e)
Thus

(Fq(q),Faoe(P)) = (q,7")

> cos(6(g,p")) — O(e) ®)
= max(g, p) — O(e)

which proves the desired statement 5 after a constant factor rescaling of .

Next, suppose we are in case (A) where S = {p € P’| ¢(p) = (q)} is non-empty. In this case, S
consists of the set of points p with || (p) — ¢(q)|lo = 0. From this, it follows again by Claim A.4
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that 6(¢,p) < /em for any p € S. Thus, by the same reasoning as above, we have

(Fy(q), Faoe(P)) = ﬁ S cos(0(q, )
peS

> % S (1-06)
pes 9)
1

> @%“q,p*) - 0(e))

= r;lea;,<<q,p> —O(e)

which again proves the desired statement 5 in case (A), thereby completing the full proof in the case
where there are no random projections.

To analyze the expectation, note that using the fact that |(Fy(q), Faoc(P))| < 1 deterministically, the
small O(ed) probability of failure (i.e. the event that & does not hold) above can introduce at most a
O(gd) < e additive error into the expectation, which is acceptable after a constant factor rescaling of
E.

Finally, to incorporate projections, by standard consequences of the Johnson Lindenstrauss Lemma
(Fact A.2) setting dproj = O(Zz log ) and projecting via a random Gaussian or +1 matrix from ) :

R¢ — R%wi, for any set S C P we have that E [(1/:(q), 1/;(%‘ > pesP)| = (g, ﬁ > pes p), and
moreover that (g, l—é‘ Y pesP) = (¥(q), '(/;(ﬁ Zpesp»HquHﬁ Y opespllzteforallg € Q,p €
P with probability at least 1 — 4. Note that ||¢||2 = 1, and by triangle inequality || ﬁ > pespllz <
|qu| > pes |Ipll2 = 1. Thus, letting Fq(Q), Faoc (P) be the FDE values without the inner projection

1) and F;”(Q)7 F;’(’)C(P) be the FDE values with the inner projection %), conditioned on the above it
follows that

—(FY(Q).Fh (P)) = — ) (F¥(q),Fp.(P))

= — ) ((Fq(q), Faoe(P)) £ ) (10)

_ b
@l

Finally, to analyze the expectation, note that since

(Fq(Q), Faoe(P)) £ ¢

1
Q)

as before conditioning on this small probability event changes the expectation of 5 by at most a €
additive factor, which completes the proof of the Theorem after a constant factor rescaling of ¢.

(Fy(Q). Fane(P))| < ﬁ S (Fo(@), Faoe(P))] < 1
qeQ

O

Equipped with Theorem 2.1, as well as the sparsity bounds from Lemma A.1, we are now prepared
to prove our main theorem on approximate nearest neighbor search under the Chamfer Similarity.

Theorem 2.2. Fix any ¢ > 0, query Q, and dataset P = {Py,. .., P,}, where Q C R® and each
P; C RY is a set of unit vectors. Let m = |Q| 4+ max;ec[n] | P;|. Then setting ko, = O(leem),

1>
dproj = O(Ei2 log(m/e)) and Ryeps = O(Ei2 logn) so that dppg = m®/9) .logn. Then setting

i* = argmax;e[,) (Fy(Q), Faoc(P;)), with high probability (i.e. 1 — 1/ poly(n)) we have:

NCHAMFER(Q, P;+) > mz[u]c NCHAMFER(Q, P;) — ¢
1en

Given the query Q, the document P* can be recovered in time O (|Q| max{d, n} Zr log(“2)logn).
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Proof of Theorem 2.2. First note, for a single repetition, for any subset P; € D, by Theorem 2.1 we
have

E[(Fq(Q),Faoc(P;))] = NCHAMFER(Q, P) £ ¢

Moreover, as demonsrated in the proof of Theorem 2.1, setting § = 1/10, we have

1
57 Fa(Q) Fa(P ‘ 1 Py (0) Fan(P)] < 1
q€Q

It follows that for each repetition i € [Ryeps), letting Fq(Q)*, Fuoc (P;)° be the coordinates in the final
FDE vectors coordeesponding to that repetition, the random variable X; = ﬁ (Fi(Q),Fie(P)))
is bounded in [—1, 1] and has expectation NCHAMFER(Q, P;) £ €. By Chernoff bounds, averaging
over Reeps = O(Z5 log(n)) repetitions, we have

Rereps 1

|Q‘ < (Q) Fdoc(P )> - NCHAMFER(Qv Pj) g 2e (11)
reps

=1

with probability 1 — 1/n% for any arbitrarily large constant C' > 1. Note also that

Riyeps i i
DT Rreps\Q\ (Fa(Q), Fi.(P;)) = m<Fq(Q) Foc(P;)), where Fy(Q), Fyoc (P;) are the final
FDEs. We can then condition on (11) holding for all documents j € [n], which holds with probability
with probability 1 — 1/n¢~! by a union bound. Conditioned on this, we have

NCHAMFER(Q, P;) > ﬁ(Fq(Q% Faoc(Pp)) — 2¢
reps
B Jné?ﬁ Rreps|Q| F ( ) FdOC(Pj)> o (12)

> max NCHAMFER(Q, Pj) —
J€[n]

which completes the proof of the approximation after a constant factor scaling of €. The runtime
bound follows from the runtime required to compute F(Q), which is O(|Q| Rrepsd(dproj + ksim)) =

O(|Q]=% logn d(% log(m/e) + Llogm), plus the runtime required to brute force search for the nearest
dot product Spemﬁcally, note that each of the n FDE dot products can be co Iputed in time pro-
portional to the sparsity of F(Q), which is at most O(|Q|dpro;j Rreps) = O(|Q| -7 log(m/e) logn).
Adding these two bounds together yields the desired runtime. O

B Additional Dataset Information

In Table 8 we provide further dataset-specific information on the BEIR retrieval datasets used in this
paper. Specifically, we state the sizes of the query and corpuses used, as well as the average number
of embeddings produced by the ColBERTv2 model per document. Specifically, we consider the six
BEIR retrieval datasets MS MARCO [40], NQ [31], HotpotQA [53], ArguAna [47], SciDocs [11],
and Quora [46], Note that the MV corpus (after generating MV embeddings on all documents in a
corpus) will have a total of #Corpus x (Avg # Embeddings per Doc) token embeddings. For even
further details, see the BEIR paper [46].

MS MARCO | HotpotQA NQ Quora | SciDocs | ArguAna
#Queries 6,980 7,405 3,452 | 10,000 1,000 1,406
#Corpus 8.84M 5.23M 2.68M | 523K 25.6K 8.6K
Avg
# Embeddings 78.8 68.65 100.3 18.28 165.05 154.72
per Doc

Figure 8: Dataset Specific Statistics for the BEIR datasets considered in this paper.

19



C Additional Experiments and Plots

In this Section, we provide additional plots to support the experimental results from Section 3. We
providing plots for all six of the datasets and additional ranges of the z-axis for our experiments in
Section (§3.1), as well as additional experimental results, such as an evaluation of variance, and of
the quality of final projections in the FDEs.

FDE vs. SV Heuristic Experiments. In Figures 9 and 10, we show further datasets and an
expanded recall range for the comparison of the SV Heuristic to retrieval via FDEs. We find that
our 4k+ dimensional FDE methods outperform even the deduplciated SV heuristic (whose cost is
somewhat unrealistic, since the SV heuristic must over-retrieve to handle duplicates) on most datasets,
especially in lower recall regimes. In Table 1, we compare how many candidates must be retrieved by
the SV heuristic, both with and without the deduplciation step, as well as by our FDE methods, in
order to exceed a given recall threshold.

Tlizgﬁgl 4 | SV non-dedup | SV dedup | 20k FDE | 10k FDE | 4k FDE | 2k FDE
80% 1200 300 60 60 80 200
85% 2100 400 90 100 200 300
90% 4500 800 200 200 300 800
95% >10000 2100 700 800 1200 | 5600

Table 1: FDE retrieval vs SV Heuristic: number of candidates that must be retrieved by each method
to exceed a given recall on MS MARCO. The first two columns are for the SV non-deduplicated
and deduplicated heuristics, respectively, and the remaining four columns are for the FDE retrieved
candidates with FDE dimensions {20480, 10240, 4096, 2048}, respectively. RecallQN values were
computed in increments of 10 between 10-100, and in increments of 100 between 100-10000, and
were not computed above N > 10000.

Retrieval quality with respect to exact Chamfer. In Figure 11, we display the full plots for
FDE Recall with respects to recovering the 1-nearest neighbor under Chamfer Similarity for all six
BEIR datasets that we consider, including the two omitted from the main text (namely, SciDocs and
ArguAna).

C.1 Variance of FDEs.

Since the FDE generation is a randomized process, one natural concern is whether there is large
variance in the recall quality across different random seeds. Fortunately, we show that this is not the
case, and the variance of the recall of FDE is essentially negligible, and can be easily accounted for
via minor extra retrieval. To evaluate this, we chose four sets of FDE parameters (Rreps, Ksim, dpmj)
which were Pareto optimal for their respective dimensionalities, generated 10 independent copies
of the query and document FDEs for the entire MS MARCO dataset, and computed the average
recall@100 and 1000 and standard deviation of these recalls. The results are shown in Table 2, where
for all of the experiments the standard deviation was between 0.08-0.3% of a recall point, compared
to the 80-95% range of recall values. Note that Recall@1000 had roughly twice as small standard
deviation as Recall@100.

FDE params (Rreps, ksim, dproj) | (20,5,32) | (20,5,16) | (20,4,16) | (20,4,8)
FDE Dimension 20480 10240 5120 2560
Recall@100 83.68 82.82 80.46 717.75
Standard Deviation 0.19 0.27 0.29 0.17
Recall@1000 95.37 94.88 93.67 91.85
Standard Deviation 0.08 0.11 0.16 0.12

Table 2: Variance of FDE Recall Quality on MS MARCO.
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Figure 9: FDE retrieval vs SV Heuristic, Recall@100-5000
MSMarco 09 HotpotQA Quora
I
075 |}
- {.‘ — sv
- SV w/ Dedup
100 200 300 400 500 100 200 300 400 500 Loooo oo
SciDocs ArguAna —— FDE 10240
1.0 —— FDE 4096
—— FDE 2048

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Recall@N Recall@N Recall@N

Figure 10: FDE retrieval vs SV Heuristic, Recall@5-500

Experiment w/o projection  w/ projection | w/o projection w/ projection

Dimension 2460 2460 5120 5120
Recall@100 77.71 78.82 80.37 83.35
Recall@1000 91.91 91.62 93.55 94.83
Recall@10000 97.52 96.64 98.07 98.33

Table 3: Recall Quality of Final Projection based FDEs with dppg € {2460, 5120}
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Figure 11: Comparison of FDE recall with respect to the most similar point under Chamfer.

Experiment w/o projection W/ projection | w/o projection W/ projection
Dimension 10240 10240 20480 20480
Recall@100 82.31 85.15 83.36 86.00
Recall@1000 94.91 95.68 95.58 95.95
Recall@10000 98.76 98.93 98.95 99.17

Table 4: Recall Quality of Final Projection based FDEs with dgpg € {10240, 20480}

C.2 Comparison to Final Projections.

We now show the effect of employing final projections to reduce the target dimensionality of
the FDE’s. For all experiments, the final projection v’ is implemented in the same way as in-
ner projections are: namely, via multiplication by a random +1 matrix. We choose four tar-
get dimensions, drpg € {2460, 5120, 10240, 20480}, and choose the Pareto optimal parame-
ters (RrepS7 Ksim, dproj) from the grid search without final projections in Section 3.1, which are
(20,4, 8),(20,5,8),(20,5,16), (20, 5, 32). We then build a large dimensional FDE with the parame-
ters (Rreps, Ksim, dproj) = (40, 6,128). Here, since d = dpyoj, we do not use any inner productions
when constructing the FDE. We then use a single random final projection to reduce the dimensionality
of this FDE from Reps - 2Feim “dproj = 327680 down to each of the above target dimensions drpg. The
results are show in Tables 3 and 4. Notice that incorporating final projections can have a non-trivial
impact on recall, especially for Recall@100, where it can increase by around 3%. In particular, FDEs
with the final projections are often better than FDEs with twice the dimensionality without final
projections. The one exception is the 2460-dimensional FDE, where the Recall@100 only improved
by 1.1%, and the Recall@1000 was actually lower bound 0.3%.

C.3 Ball Carving

We now provide further details on the ball carving technique described in Section 3.2 that is used in
our online experiments. Specifically, to improve rescoring latency, we reduce the number of query
embeddings by a pre-clustering stage. Specifically, we group the queries () into clusters C1, . .., Ck,
sete; = Y, gec, 4 and Q¢ = {c1,...,cr}. Then, after retrieving a set of candidate documents
with the FDEs, instead of rescoring via CHAMFER(Q, P) for each candidate P, we rescore via
CHAMFER(Q¢, P), which runs in time O(|Q¢| - | P|), offering speed-ups when the number of
clusters is small. Instead of fixing k, we perform a greedy ball-carving procedure to allow k to adapt
to Q. Specifically, given a threshold 7, we select an arbitrary point ¢ € @, cluster it with all other
points ¢’ € @ with (g, ¢') > 7, remove the clustered points and repeat until all points are clustered.
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Figure 12: Plots showing the trade-off between the threshold used for ball carving and the end-to-end recall.
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Figure 13: Per-Core Re-ranking QPS versus Ball Carving Threshold, on MS MARCO dataset.

In Figure 12, we show the the trade-off between end-to-end Recall@k of MUVERA and the ball
carving threshold used. Notice that for both £ = 100 and k£ = 1000, the Recall curves flatten
dramatically after a threshold of 7 = 0.6, and for all datasets they are essentially flat after 7 > 0.7.
Thus, for such thresholds we incur essentially no quality loss by the ball carving. For this reason, we
choose the value of 7 = 0.7 in our end-to-end experiments.

On the other hand, we show that ball-carving at this threshold of 0.7 gives non-trivial efficiency gains.
Specifically, in Figure 13, we plot the per-core queries-per-second of re-ranking (i.e. computing
CHAMFER(Q¢, P)) against varying ball carving thresholds for the MS MARCO dataset. For
sequential re-ranking, ball carving at a 7 = 0.7 threshold provides a 25% QPS improvement, and
when re-ranking is being done in parallel (over all cores simultaneously) it yields a 20% QPS
improvement. Moreover, with a threshold of 7 = 0.7, there were an average of 5.9 clusters created
per query on MS Marco. This reduces the number of embeddings per query by 5.4x, down from
the initial fixed setting of |@| = 32. This suggests that pre-clustering the queries before re-ranking
gives non-trivial runtime improvements with negligible quality loss. This also suggests that a fixed
setting of || = 32 query embeddings per model is likely excessive for MV similarity quality, and
that fewer queries could achieve a similar performance.

C.4 Product Quantization

PQ Details We implemented our product quantizers using a simple “textbook” k-means based
quantizer. Recall that AH-C-G means that each consecutive group of G dimensions is represented
by C centers. We train the quantizer by: (1) taking for each group of dimensions the coordinates
of a sample of at most 100,000 vectors from the dataset, and (2) running k-means on this sample
using k = C' = 256 centers until convergence. Given a vector z € IR?, we can split z into d/G
blocks of coordinates x (1), ..., % /q) € R each of size G. The block x(;) can be compressed by
representing x ;) by the index of the centroid from the i-th group that is nearest to x(;). Since there
are 256 centroids per group, each block z ;) can then be represented by a single byte.
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Figure 14: Plots showing the QPS vs. Recall@100 for MUVERA on the BEIR datasets we evaluate in this
paper. The different curves are obtained by using different PQ methods on 10240-dimensional FDEs.
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Figure 15: Plots showing the QPS vs. Recall@1000 for MUVERA on the BEIR datasets we evaluate in this
paper. The different curves are obtained by using different PQ methods on 10240-dimensional FDE:s.

Results In Figures 14 and 15 we show the full set of results for our QPS experiments from
Section 3.2 on all of the BEIR datasets that we evaluated in this paper. We include results for both
Recall@100 (Figure 14) and Recall@1000 (Figure 15).

We find that PQ-256-8 is consistently the best performing PQ codec across all of the datasets that we
tested. Not using PQ at all results in significantly worse results (worse by at least 5x compared to
using PQ) at the same beam width for the beam; however, the recall loss due to using PQ-256-8 is
minimal, and usually only a fraction of a percent. Since our retrieval engine works by over-retrieving
with respect to the FDEs and then reranking using Chamfer similarity, the loss due to approximating
the FDEs using PQ can be handled by simply over-retrieving slightly more candidates.
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We also observe that the difference between different PQ codecs is much more pronounced in the
lower-recall regime when searching for the top 1000 candidates for a query. For example, most of
the plots in Figure 15 show significant stratification in the QPS achieved in lower recall regimes,
with PQ-256-16 (the most compressed and memory-efficient format) usually outperforming all
others; however, for achieving higher recall, PQ-256-16 actually does much worse than slightly less
compressed formats like PQ-256-8 and PQ-256-4.
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